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Abstract

In this paper we revisit a time series model introduced by McElroy and Politis (2007a)

and generalize it in several ways to encompass a wider class of stationary, nonlinear,

heavy-tailed time series with long memory. The joint asymptotic distribution for the

sample mean and sample variance under the extended model is derived; the associ-

ated convergence rates are found to depend crucially on the tail thickness and long

memory parameter. A self-normalized sample mean, that concurrently captures the

tail and memory behavior, is defined. Its asymptotic distribution is approximated by

subsampling without the knowledge of tail or/and memory parameters; a result of

independent interest regarding subsampling consistency for certain long-range depen-

dent processes is provided. The subsampling-based confidence intervals for the process

mean are shown to have good empirical coverage rates in a simulation study. The

influence of block size on the coverage and the performance of a data-driven rule for

block size selection are assessed. The methodology is further applied to the series of

packet-counts from Ethernet traffic traces.
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1 Introduction

This work builds on a theoretical study by McElroy and Politis (2007a), in which the authors

presented a new heavy-tailed long memory (HTLM) time series process and its properties;

here, by long memory we mean that the autocovariances are not absolutely summable. The

HTLM series {X̃t} is defined as

X̃t = η̃ + σ̃tG̃t, (1.1)

where the series {G̃t} and {σ̃t} are independent and σ̃2
t = ε̃t where {ε̃t} are iid α/2-stable, α ∈

(1, 2), totally positively-skewed, location-zero random variables with scale (cos(πα/4))2/α.

The nondeterministic Gaussian series {G̃t} is stationary with long memory β ∈ (0, 1). The

attractiveness of this model is its ability to capture both infinite variance and long memory,

two properties eagerly sought by modelers, particularly those working with data from the

modern computer networks (Willinger et al. (1998), Cappe et al. (2002), Lee and Fapojuwo

(2005)). Likewise, the process has finite autocovariances beyond lag zero, which allows long

memory to be well-defined (in terms of autocovariances). This feature is not shared by two

popular infinite-variance long-memory models, namely the α-stable FARIMA and the linear

fractional stable noise (Samorodnitsky and Taqqu (1994)).

Nevertheless, the model of McElroy and Politis (2007a) has two somewhat restrictive

characteristics: the marginal distribution is assumed to be both symmetric and α-stable.

However, these properties can be mitigated by a modification/extension of the basic model,

and this is the first contribution of the current paper. The asymmetry of paths that can, for

example, mimic the behavior of the series of packet-counts (such as those shown in Figure

1) can be incorporated by requiring that the series {G̃t} is a function of a long-memory

Gaussian series rather than being one itself. On the other hand, the assumption that the

marginals are (exactly) α-stable can be relaxed to instead just requiring them to be in the

domain of attraction of the stable law.

Our second contribution is concerned with statistical inference for the mean of the ex-

tended model. We first investigate the joint asymptotic behavior of the sample mean and the

sample variance. As expected, the associated rates of convergence depend in an intricate way

on the tail and long memory parameters. As in McElroy and Politis (2007a), we then focus

on a self-normalized sample mean whose rate of convergence is free of the parameters α and

β; the normalization is constructed in order to automatically adapt to these two unknown

parameters that are tricky to estimate.

The inferential part of our study is completed by constructing confidence intervals for

the mean based on subsampling (Politis et al. (1999)). The choice of the subsampling
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methodology is motivated by the fact that, although α and β are eliminated from the rate

of convergence of the self-normalized sample mean, they are still present (together with

other unknown parameters) in the asymptotic distribution. There is no explicit formula for

the asymptotic cumulative distribution function (cdf), which precludes us from using it for

inference. Our work on the consistency of the subsampling estimator involves the notion

of weak dependence (Doukhan and Louhichi (1999)), since the paradigm of strong mixing

coefficients is not workable with long memory Gaussian time series. We provide a result of

independent interest regarding the consistency of subsampling for self-normalized statistics

computed from time series exhibiting the Doukhan and Louhichi (1999) type of dependence,

which is weaker than the strong mixing assumption common to the literature.

We conclude our investigation with an in-depth simulation study and an application.

For a representative choice of model parameters and the finite-sample settings, we compute

the empirical coverage probabilities for subsampling confidence intervals for the mean. We

also devote part of this section to assessing a data-driven rule for selecting the subsampling

block size b (Götze and Rac̆kauskas (2001), Bickel and Sakov (2008)), which is particularly

important in the subsequent application to the two series from Figure 1.

The lay-out of the paper is as follows. In Section 2.1, we define the extended HTLM model

and formulate the limit theorems linked to the self-normalization of the sample mean. The

subsampling approach and its justification are described in Section 2.3, and the empirical

study in Section 3. Section 4 contains the summary while the technical proofs are gathered

in Appendix A. Appendix B contains a general treatment of subsampling for self-normalized

statistics of weakly-dependent time series.

2 Theoretical results

2.1 The general heavy-tailed long memory process

Consider a time series process {Xt} of the form

Xt = σtGt + η. (2.1)
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Figure 1: Two packets counts time series and their ACFs. The data are discussed in detail
in Section 3.

We list several assumptions on this process, which generalize the HTLM process of McElroy

and Politis (2007a):

• The series {σt} and {Gt} are independent. (2.2)

• The {σt} are iid random variables with cdf in D(α), i.e. the domain of attraction

of an α-stable distribution. (2.3)

• The tail index α ∈ (1, 2) and the mean of σt is nonzero. (2.4)

• {Gt} is a long memory process with parameter β ∈ (0, 1). (2.5)

• {Gt} is purely nondeterministic with finite variance, and can be written as Gt = g(Vt)

for a long memory Gaussian process {Vt} and g of unit Hermite rank. (2.6)

If for convenience we let Yt = Xt − η, then Yt has mean zero. When σ2
t = εt is an α/2-

stable, totally right-skewed random variable, the marginal distribution of Yt is symmetric α

stable (see McElroy and Politis (2007a)). If 1/σ2
t is chi-square distributed with α degrees of

freedom, then the marginal distribution of Yt is student t with α degrees of freedom. More

generally, the so-called volatility series σt may have any heavy-tailed asymmetric distribution,

including the Pareto and Burr distributions, so long as its mean is nonzero (see discussion

below).

The second assumption (2.3) indicates that there exists a rate an = n1/αK(n) with
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K ∈ L, where L denotes the space of slowly-varying functions (Embrechts et al. (1997)),

such that

a−1
n

n∑
t=1

(σt − µ)
L

=⇒ W,

where µ = Eσt and W has a (possibly skewed, but centered) α-stable distribution. This rate

an is unique up to a constant factor, and can be defined by solving n−1 = P[|σ| > an] for all

n (see Proposition 2.2.13 of Embrechts et al. (1997)); without loss of generality we suppose

that an > 0. Note that since the Hermite rank of g is one by (2.6), the mean of Gt is zero,

and hence the mean of σtGt is zero as well. We assume that µ 6= 0 in (2.4); although limiting

results can be derived when µ = 0, the asymptotic behavior is sufficiently different such that

self-normalization has to be altered slightly (there is some discussion of this case at the end

of the proof of Theorem 1). Our perspective for many applications is that σt is positive, or

at least right skewed, so that µ > 0 is a reasonable assumption.

The fourth assumption on long memory (2.5) is defined more precisely as follows. We

first note that the process {Xt} has infinite variance (since α < 2), but the autocovariances

at nonzero lags are perfectly well-defined. Call this sequence R(h) (and informally speaking

R(0) = ∞) so that R(h) = µ2γ(h) with γ(h) the autocovariance sequence of {Gt}. Then we

assume ∑

0<|h|<n

R(h) ∼ L(n)nβ (2.7)

for L ∈ L and β ∈ [0, 1). Here the tilde notation is defined by an ∼ bn iff an/bn → 1. It is

also convenient to assume a growth bound on the absolute sum

∑

0<|h|<n

|R(h)| = O(L(n)nβ). (2.8)

We refer to (2.7) and (2.8) together as LM(β) for short, with it being understood that

LM(0) denotes the case of absolutely summable autocovariances (at nonzero lags). The rate

of partial sum growth in (2.7) will be denoted by bn.

The fifth assumption (2.6) allows us to generalize the simple Gaussian assumption of

McElroy and Politis (2007a) to more complicated distributions, e.g., g(x) = ex and g(x) =

log |x|. This is useful, since it allows us to model asymmetric data. We do restrict to

unit Hermite rank on g, since otherwise the Hermite rank can play a determining role in

the convergence rate of the sample first and second moments (see Taqqu (1975) for the non-

heavy-tailed case), and thereby ruins the application of self-normalization without additional

unverifiable conditions.
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2.2 Self-normalization and limit theorems

Now we focus on the statistical inference (confidence intervals) for the unknown mean η.

The correct normalization for n(Xn−η) is the maximum of an and dn =
√

n|bn| and as such

requires the knowledge of α and β. Moreover, depending on whether an dominates dn or vice

versa, or whether the two rates are equivalent, the normalization produces three different

limits. To avoid the cumbersome estimation of α and β we can employ the self-normalization

of n(Xn−η) as suggested by McElroy and Politis (2007a). The objective of self-normalization

is to come up with a quantity that grows at rate involving cn = max{an, dn}, irrespective of

the interplay between an and dn, which eventually will facilitate the cancelation of cn. This

is achieved by combining the sample variance of {Xt} and a long memory estimator L̂Mn(ρ)

from McElroy and Politis (2007a). The growth rate of the former is always a2
n/n and that

of the latter is always d2
n/n. The resulting normalizing statistic is

σ̂n =

√√√√ 1

n

n∑
t=1

(Xt −Xn)2 + L̂Mn(ρ),

where

L̂Mn(ρ) =

∣∣∣∣∣∣

bnρc∑

|h|=1

1

n− |h|
n−|h|∑
t=1

(XtXt+h −X
2

n)

∣∣∣∣∣∣

1/ρ

, ρ ∈ (0, 1).

The self-normalized statistic of McElroy and Politis (2007a) is then the ratio of (n/cn)(Xn−η)

and (
√

n/cn)σ̂n, namely

Tn =
√

n
(Xn − η)

σ̂n

,

which is free of the troublesome rate cn. Next we provide formal justification for why the

sample variance of {Xt} and L̂Mn(ρ) are suitable for the self-normalization of the sample

mean, and conclude this section with the main limit theorem.

Under some mild regularity conditions on the distribution of εt, we have the following joint

convergence result. It is necessary that either an or dn dominates the other asymptotically

in the definition of cn, or as a third option that an/dn is asymptotic to a constant; but

we rule out the case that the ratio oscillates indefinitely. In other words, we assume that

limn→∞ nbn/a2
n either diverges to infinity or converges to a finite quantity. The limiting

quantity – which potentially could be infinite – will be referred to as A, and this assumption

will be referred to as the Balanced Condition. As discussed in Fitzsimmons and McElroy

(2010), weak convergence is characterized by the joint Fourier-Laplace transform for first

and second sample moments. Here we also introduce the notation x<α> = sign(x)|x|α and

C−1
α = Γ(1− α) cos(πα/2).
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Theorem 1 Assume the model assumptions (2.2) through (2.6), and LM(β) for β ∈ [0, 1).

Under the Balanced Condition, let A = limn→∞ nbn/a2
n, with A ∈ [0,∞]. Then we distinguish

three cases depending on the value of A:

(
c−1
n

n∑
t=1

Yt, c
−2
n

n∑
t=1

Y 2
t

)
L

=⇒





(S, U) if A = 0

(V, 0) if A = ∞
(S + V, U) if A ∈ (0,∞)

as n →∞. Here S is an α-stable random variable with scale C
−1/α
α (E|G|α)

1/α
min{A−1/2, 1},

mean-zero and skewness EG<α>/E|G|α. Also V is a mean zero Gaussian random variable

with variance µ2 min{A, 1}/(β + 1), and U is an α/2-stable with location parameter zero,

skewness one, and scale equal to C
−2/α
α/2 (E|G|α)

2/α
min{A−1, 1}. Although V is independent

of S and U , these latter variables are dependent. The joint Fourier-Laplace transform of

S + V, U is (θ real, φ > 0)

E[exp{iθ(S + V )− φU}]

= exp

{
−C−1

α E|G(θ +
√

2φN)|α min{A−α/2, 1}
(

1− i(r − l)
E(G(θ +

√
2φN))<α>

E|G(θ +
√

2φN)|α tan(πα/2)

)
1{A<∞}

}

· exp
{
−θ2µ2 min{A, 1}

2(β + 1)
1{A>0}

}
.

Here N has a standard normal distribution, independent of G, which has the same distribu-

tion as the marginal of {Gt}. Also r, l > 0 are constants giving the relative mass of the tails

of the distribution of σ.

We can utilize the statistic L̂Mn(ρ) as the second component in σ̂2
n, so long as the slowly

varying function L in (2.7) behaves asymptotically like a constant. We next extend Theorem

3 of McElroy and Politis (2007a) to the case that εt has cdf in D(α/2), making a correction

to the error rate as we do so. We say that a sequence of random variables Zn are UP (en) iff

Zn = OP (enK(n)) for any K ∈ L. (This implies that Zn = oP (en/n
ε) for any ε > 0.) Then

we have the following result.

Theorem 2 Assume the same conditions as Theorem 1, and let ρ ∈ (0, 1). Further, suppose

the fourth order cumulant function of {Gt} is absolutely summable in its three indices. Then

L̂M
ρ

n(ρ)

bρ
n

=
L(nρ)

Lρ(n)
+ UP (nρ(1−β)−2+[2/α max(β+1)]) + UP (nρ(1−β)−η) + UP (nρ(1−β)+1/α−1),

where η = 1/2 if β < 1/2 and η = 1− β if β ≥ 1/2.
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Remark 1 There are three error terms in the above result that depend on ρ, all of which

must tend to zero to obtain consistency. The first term is negligible for any ρ when β + 1 ≥
2/α, but otherwise the rate ρ should be taken smaller than unity. For the second error term,

when β > 1/2 it is always true that ρ(1−β) < η, but otherwise we must decrease ρ. For the

third term, we must have ρ < (1−1/α)/(1−β). In order for ρ to satisfy all three conditions

simultaneously, it is sufficient that ρ < 1 and ρ < (1− 1/α)/(1− β). A plot of this surface

– the maximal admissible ρ as a function of α and β – is provided below.
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Figure 2.1 Maximal admissible values of ρ = min{(1 − 1/α)/(1 − β), 1} (see Remark 1) as a

function of (α, β). Dark shades correspond to small ρ’s and light to the large ones, with the exact

values printed.

Assuming that ρ is chosen sufficiently small such that the errors in Theorem 2 tend to

zero, as described in Remark 1, we conclude that

L̂Mn(ρ)

bn

= oP (1) +
L1/ρ(nρ)

L(n)

as n →∞. In order for this ratio to converge, it is necessary that L1/ρ(nρ)/L(n) be asymp-

totic to a constant; call this quantity Dρ. So long as Dρ ∈ (0,∞), we can proceed to use

L̂Mn(ρ) as an estimator of the long memory dynamics. The following result summarizes our

findings.
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Theorem 3 Assume the same conditions as Theorem 1. Let A = limn→∞ nbn/a
2
n (assuming

the Balanced Condition) with A ∈ [0,∞], and suppose that Dρ = limn→∞ L1/ρ(nρ)/L(n) is

a constant in (0,∞) when A > 0. Finally, suppose that ρ is sufficiently small such that the

error terms in Theorem 2 vanish. Then we have
(

c−1
n

n∑
t=1

(Xt − η) , c−2
n

n∑
t=1

(
Xt −Xn

)2
, c−2

n nL̂Mn(ρ)

)

L
=⇒





(S, U, 0) if A = 0

(V, 0, Dρ) if A = ∞
(S + V, U, min{1, A}Dρ) if A ∈ (0,∞)

as n →∞. The definitions of the random variables S, U, V are as in Theorem 1.

As a consequence, the self-normalized statistic of this paper will converge to a non-degenerate

distribution for any value of A ∈ [0,∞], so long as the assumptions hold true. That is,

Tn
L

=⇒ S 1{A<∞} + V 1{A>0}√
U 1{A<∞} + min{1, A}Dρ

. (2.9)

2.3 Subsampling

As seen in Theorem 3, the asymptotic distribution of Tn cannot readily be used to ap-

proximate the exact sampling distribution of Tn, Ln(x) = P (Tn ≤ x) (and in particular its

quantiles) as it depends on the unknown parameters. That leaves us with two options, either

to estimate α and β explicitly (which we deliberately avoided so far) or to approximate the

distribution Ln nonparametrically. The first choice calls for two sophisticated (nonexisting

as far as we are aware) estimation schemes, one to estimate α in the nonlinear, long-memory

process and another to estimate β in the nonlinear, heavy-tailed infinite-variance time series.

Moreover, even if such schemes were available, the asymptotic distribution of Tn would still

need to be approximated via Monte Carlo because it lacks a computable cdf. Therefore,

motivated by good numerical results, we selected the subsampling (Politis et al. (1999))

methodology, the most general resampling method.

In subsampling we recompute the statistic Tn over short, overlapping subseries of length b

– where b is a block-size dependent on n – described via Xt, Xt+1, . . . , Xt+b−1, t = 1, 2, . . . , n−
b + 1. This gives rise to n− b + 1 subsampling statistics

Tn,b,t =
√

b
(Xn,b,t −Xn)

σ̂n,b,t

,
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where Xn,b,t =
∑t+b−1

l=t Xl/b and

σ̂2
n,b,t =

1

b

t+b−1∑

l=t

(Xl −Xn,b,t)
2 + L̂Mn,b,t(ρ),

with

L̂Mn,b,t(ρ) =

∣∣∣∣∣∣

bbρc∑

|h|=1

1

b− |h|
t+b−1−|h|∑

l=t

(XlXl+h − (Xn,b,t)
2)

∣∣∣∣∣∣

1/ρ

, ρ ∈ (0, 1).

These statistics in turn are used to approximate the distribution Ln(x) via

L̂n,b(x) =
1

n− b + 1

n−b+1∑
t=1

1{Tn,b,t≤x}.

The approximate two-sided 1− p equal-tailed confidence intervals for η is then defined as

Iet;1−p(η) =

[
Xn − σ̂n√

n
cn,b(1− p/2), Xn − σ̂n√

n
cn,b(p/2)

]
, (2.10)

where cn,b(1− p) = inf{x : L̂n,b(x) ≥ 1− p} is the (lower) 1− p quantile of the subsampling

distribution. Setting

L̂n,b,|·|(x) =
1

n− b + 1

n−b+1∑
t=1

1{|Tn,b,t|≤x}.

leads to a two-sided symmetric subsampling interval

Is;1−p(η) =

[
Xn − σ̂n√

n
cn,b,|·|(1− p), Xn +

σ̂n√
n

cn,b,|·|(1− p)

]
, (2.11)

with cn,b,|·|(1− p) = inf{x : L̂n,b,|·|(x) ≥ 1− p}.
The consistency of the subsampling estimator, in the sense that |L̂n,b(x)−Ln(x)| P−→ 0 as

n →∞ for all x, for strongly mixing sequences and statistics with a continuous asymptotic

distribution is known (Politis et al. (1999)), but otherwise requires a nonstandard approach.

It is known in the long memory literature (see Guégan and Ladoucette (2001)) that Gaussian

long memory processes cannot be strong mixing, since this is equivalent to complete regularity

– an impossibility for processes with spectral poles by Theorem 3 of Ibragimov and Rozanov

(1978). This is in contrast to Theorem 2.2 of Hall et al. (1998), whose assumptions include

complete regularity of the long memory Gaussian time series. Note that Nordman and Lahiri

(2005) approaches subsampling through a linearity assumption instead.

Therefore we present an alternative route to establishing subsampling consistency, by

considering the θ-weak dependence literature of Doukhan and Louhichi (1999) and Bardet
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et al. (2008). By combining the proofs of Theorem 11.3.1 of Politis et al. (1999) and Lemma

3.1 of Ango-Nze et al. (2003) it is possible to establish the desired consistency rate under

assumptions typical to the literature; for completeness we present the result in Appendix

B with proof. The application of Theorem 4 to the problem of our paper is immediate,

using Theorem 3 to identify Z as S 1{A<∞} + V 1{A>0}, W as
√

U 1{A<∞} + min{1, A}Dρ,

αn = n/cn, δn =
√

n/cn, and L the cdf of the limit variable in (2.9). Then αb/αn → 0 and

τb/τn → 0, as required by Theorem 4, follows from b/n → 0. Therefore, so as long as the

process satisfies the weak-dependence condition – the other conditions are easily seen to be

satisfied – and b/n+1/b → 0 as n →∞, we are assured of the consistency of the subsampling

procedure. The following result gives supplemental conditions on the data process – when

σt is positive – to ensure λ- and θ-weak dependence (see Doukhan and Louhichi (1999) and

Bardet et al. (2008) for definitions).

Proposition 1 Under the model assumptions of this section and the assumption that g is

invertible and Lipschitz continuous, and that σt is a positive sequence, the processes {Gt}
and {Xt} are λ-weakly dependent. If the process {Vt} is also causal, then {Gt} and {Xt} are

θ-weakly dependent.

The validity of subsampling under weak dependence is proved in Appendix B under a con-

dition of polynomial decay of the weak dependence coefficients εr. In the case of our long

memory process {Xt}, the rate of decay of εr is inherited from the dependence structure of

{Vt}; as in Bardet et al. (2008), this can be a polynomial rate depending on β. In particular,

if g is the identity such that {Gt} is actually a long-range dependent Gaussian process, the

results in Section 3 of Bardet et al. (2008) indicate that a polynomial rate of decay on εr can

be obtained. In particular, a (causal) Gaussian ARFIMA has εr = O(rβ−1)—see Doukhan

and Louhichi (1999).

3 Simulation study and application to real data

3.1 Simulations

We now report results of a simulation study of the model with η = 0, where the series {Vt}
follows the Gaussian fractionally differenced (FD) process with parameter d = β/2 ∈ (0, 0.5)

and standard normal innovations. Its autocovariance function is γFD(n) = Γ(1−2d)
Γ(d)Γ(1−d)

n2d−1

and γFD(0) = Γ(1−2d)
Γ2(1−d)

– see Samorodnitsky and Taqqu (1994). The sample paths of the
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FD process were generated in package R via the FFT-based algorithm of Stoev and Taqqu

(2004).

For the {εt} series, we first chose α/2-stable totally right-skewed iid random variables

with scale parameter (cos(πα/4))2/α and location 0, and for the function g we set g(x) =

exp(x) − exp(0.5). As a second selection, we chose Pareto random variables with shape

parameter α/2 and location 1 and g(x) = x.

We generated R = 500 realizations of length n = 500, 1000 for each of the 16 combinations

(α, d), α ∈ {1.2, 1.4, 1.6, 1.8} and d ∈ {0.1, 0.2, 0.3, 0.4}. To assess the influence of ρ ∈
{0.6, 0.7, 0.8} we used the same realizations of {Xt} for a given pair (α, d).

For n = 500, we considered b ∈ {16, 21, 28, 38, 50, 67, 89, 119, 158, 211}, that is, we

followed the formula [qjn] (motivated by the discussion given below) with q = 0.75 and

j = jmax, jmax − 1, . . . , jmin with jmax = [logq(15/n)], jmin = 3. This covered the subsample

size from around 3% to 42% of the sample size. For n = 1000 we set jmax = [logq(30/n)],

jmin = 3 to obtain the same ratios of b/n.

To automatically choose the subsampling block size b, we implemented the adaptive block

selection algorithm of Götze and Rac̆kauskas (2001) and Bickel and Sakov (2008) – henceforth

GRBS – with Kolmogorov-Smirnov (KS) distance. This scheme has been considered in the

m-out-of-n bootstrap for the iid data, but gave satisfactory results in subsampling of our

stationary time series. The rule consists of the following steps:

• Consider b’s, bj = [qjn], j = 1, 2, . . ., 0 < q < 1.

• For each bj, compute L̂n,bj
.

• Let δ be the KS distance and set

b̂ = arg min
bj

δ
(
L̂n,bj

, L̂n,bj+1

)
.

• The estimator of Ln is L̂n,b̂.

Heuristics behind the GRBS rule are as follows. If the block size is within the ‘right’ range

of b values, then the corresponding empirical distributions should be ‘close’ to each other,

and therefore values of b associated with small KS distances will be selected by the rule.

Subsampling confidence intervals, equal-tailed (2.10) and symmetric (2.11), for η at 95%

nominal level were constructed in each case. Figures 3.1-3.4 display the empirical coverage

probabilities (CP) in the stable case for n = 500. The subsample size b is shown on the

lower axis (‘a’ stands for adaptive) and the type of the interval, equal-tailed or symmetric,

12



on the upper. Different plotting characters correspond to different ρ’s as indicated by the

legend, and the solid horizontal line marks the nominal level of 0.95. The remaining CPs,

for a particular case of ρ = 0.7 and adaptively-selected block size, are given in Table 3.1.
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Figure 3.1 Empirical coverage probabilities for the 95% subsampling confidence intervals for η

based on R = 500 replications of length n = 500 when εt ∼ α/2-stable, α = 1.2, value of ρ indicated

by the legend.
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Figure 3.2 Empirical coverage probabilities for the 95% subsampling confidence intervals for η

based on R = 500 replications of length n = 500 when εt ∼ α/2-stable, α = 1.4, value of ρ indicated

by the legend.
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Figure 3.3 Empirical coverage probabilities for the 95% subsampling confidence intervals for η

based on R = 500 replications of length n = 500 when εt ∼ α/2-stable, α = 1.6, value of ρ indicated

by the legend.
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Figure 3.4 Empirical coverage probabilities for the 95% subsampling confidence intervals for η

based on R = 500 replications of length n = 500 when εt ∼ α/2-stable, α = 1.8, value of ρ indicated

by the legend.

In general, the empirical coverage probabilities are fairly good and range from around 70%

up to around 95%. The undercoverage seems to be coming from the subsampling and not

from the adaptive GRBS rule, which tends to pick up the optimal subsample size. We see

that the coverage decreases with increasing block size. As expected, the empirical coverage

for symmetric intervals is closer to the nominal level compared to the equal-tailed intervals,

because the former intervals tend to be wider, and thus less informative. Likewise, the

empirical CPs increase as the tail index decreases and decrease with increasing d.

equal-tailed symmetric

α \ d 0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4

εt ∼ Stable, n = 500

1.2 0.918 0.906 0.870 0.814 0.956 0.952 0.932 0.886

1.4 0.888 0.856 0.790 0.716 0.932 0.902 0.866 0.812

1.6 0.874 0.804 0.750 0.710 0.912 0.858 0.812 0.782

1.8 0.870 0.808 0.780 0.766 0.896 0.820 0.792 0.780

εt ∼ Pareto, n = 500

1.2 0.928 0.926 0.904 0.908 0.976 0.972 0.960 0.958

1.4 0.924 0.894 0.860 0.840 0.962 0.932 0.902 0.896

1.6 0.842 0.778 0.742 0.716 0.902 0.836 0.806 0.766

1.8 0.856 0.772 0.738 0.728 0.904 0.834 0.786 0.790

εt ∼ Stable, n = 1000

1.2 0.934 0.940 0.950 0.948 0.974 0.974 0.984 0.982

1.4 0.886 0.884 0.876 0.750 0.922 0.936 0.926 0.784

1.6 0.880 0.888 0.874 0.666 0.916 0.908 0.876 0.680

1.8 0.922 0.920 0.914 0.760 0.944 0.956 0.920 0.704

εt ∼ Pareto, n = 1000

1.2 0.938 0.944 0.936 0.914 0.982 0.984 0.978 0.962

1.4 0.854 0.846 0.818 0.800 0.924 0.898 0.874 0.862

1.6 0.826 0.788 0.752 0.768 0.890 0.858 0.792 0.824

1.8 0.848 0.802 0.776 0.824 0.906 0.834 0.820 0.872

Table 3.1 Empirical coverage probabilities for the 95% subsampling confidence intervals for η

based on R = 500 replications with adaptively-selected block size and ρ = 0.7.
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Overall, for the longer time series we report higher or similar CPs compared to those with

n = 500.
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Figure 3.5 An example of the equal-tailed 95% confidence intervals for η with adaptively-chosen

b based on R = 50 replications of length n = 500 when εt ∼ Stable and ρ = 0.7.
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Figure 3.6 Left: KS distances between L̂n,b(x) and L̂n,b+1(x), b < 211, averaged over R = 500

replications of length n = 500 when εt ∼ Stable and ρ = 0.7. Right: Barcharts of the block sizes

selected by the GRBS rule.

The effect of ρ is small and perhaps visible to some extent when tails are quite heavy,

implying the use of larger values. The size of the intervals seems to be influenced by the tail

thickness (the heavier the tails, the wider the interval) and to a lesser extent by the memory

parameter (Figure 3.5).

In Figure 3.6 we show how the KS distance between the subsampling distributions for

consecutive b’s behave as a function of b. Since the distances are small for the relatively

small block sizes, the barcharts for the data-driven b’s are right-skewed.

3.2 A real-data application

Now we apply our subsampling methodology to construct confidence intervals for the mean of

time series of packet-counts. Two Ethernet traces collected in 1994 that are freely available

at http://ita.ee.lbl.gov/html/traces.html were considered: LBL-TCP-3 from the Lawrence

Berkeley Laboratory and OctExt from the Bellcore Morristown Research and Engineering

facility. More details about these data sets can be found in Paxson and Floyd (1995) and

Leland et al. (1994). The first data set contains 1 million rows and 2 columns, while the

second consists of 32441 rows and 8 columns. In both cases the first two columns are often

of main interest as they give packet arrival times (in seconds) and packet sizes (in bytes).

Time series of packet-counts used in our study were obtained by counting the number of

packets arriving within consecutive intervals of a fixed length (0.5s for LBL-TCP-3 and 1s

for OctExt). In LBL-TCP-3 we took the first 14000 observations (almost the entire series),

and in the second one the first 20000 (just under 20% of the total length). Both series and

their ACFs are displayed in Figure 1 suggesting the presence of long-memory, the possibility

of infinite variance, and asymmetry, and as such are in line with our extended long memory

time series model with heavy-tails. Similar time series obtained from these two traces (either

byte-counts or packet-counts but with different time slots than ours) have been analyzed

and/or modeled by other writers. For instance, the packet-count per 50ms series from LBL-

TCP-3 was modeled with α-stable FARIMA by Harmantzis and Hatzinakos (2001). The

authors estimated tail and memory parameters to be 1.86 and 0.31, respectively. Veitch and

Abry (2001) considered the byte-count series (per 1s) derived from OctExt. Assuming –

somewhat unrealistically – Gaussian marginals, the authors estimated the quantity d + 0.5
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(which equals (β + 1)/2, roughly the rate of growth of partial sums for a long memory

process) over nonoverlapping blocks, and found that the estimates were between 0.5 and

1. Bates and McLaughlin (2000) found that the same time series had heavy tails by fitting

generalized Pareto distribution.

Our time series were split into nonoverlapping blocks of length 500, leading to 28 subseries

for LBL-TCP-3 and 40 for OctExt, and then a 95% confidence interval for the mean was

calculated in each chunk. This was done in order to explore whether the mean seems to

change over time. The results are displayed in Figure 3.7.
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Figure 3.7 Equal-tailed (solid) and symmetric (dotted) 95% confidence intervals for η with an

adaptively-chosen b for the consecutive 1000-long subseries of byte-counts with ρ = 0.8.

We note that the midpoint of the intervals changes somewhat over time, but even more

noteworthy is the fluctuation in interval width – as borne out in our simulation studies,

heavier tails and/or longer memory tends to increase the uncertainty in our estimate of the

mean. With LBL-TCP-3 the intervals do not include zero, so we can conclude that a mean

effect in each block is actually present, whereas for OctExt we cannot always conclude that

the mean is significantly different from zero.
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4 Summary

In this paper we introduced a quite general heavy-tailed long memory model in equation

(2.1) by allowing {σt} to have cdf in D(α) and {Gt} to be of the form g(Vt) for a long

memory Gaussian process {Vt} and function g of unit Hermite rank. This can be applied

to teletraffic data or to financial data such as log returns, where σt might be taken to be

symmetric of mean zero and Gt to be the exponential of a long memory Gaussian process. In

the new setting we obtained the joint asymptotic distribution for the sample first and second

moments of {Xt − η} along with the long memory estimator. As in McElroy and Politis

(2007a), we constructed a self-normalized sample mean statistic whose rate of convergence

did not depend on either tail or memory parameter.

The subsampling approach was employed to approximate the quantiles of the sampling

distribution of the self-normalized sample mean, as the parameter-dependent asymptotic

distribution could not serve that purpose. The foundation for the methodology’s use was

based on the concept of weak dependence introduced in Doukhan and Louhichi (1999). To

choose the subsampling block size, the block selection algorithm of Götze and Rac̆kauskas

(2001) and Bickel and Sakov (2008) was considered. Its implementation with the time series

data was also novel.

The design of the simulation study encompassed models with various tail and memory

parameters, falling under regimes where either the tail or memory dynamics dominated the

variability of the sample mean. We investigated stable and Pareto distributions for {εt}, the

first with the exponential function g and the second with the identity map, as well as three

user-defined values of ρ. The empirical coverage rates for a 95% nominal level (n = 500

and n = 1000) and automatically-selected b were adequate, though with some tendency

towards under-coverage. The confidence interval methodology was illustrated on two data

sets, allowing us to monitor the behavior of the mean in consecutive blocks of packet-count

data.

Appendix A: Proofs

Proof of Theorem 1. The proof consists of splicing Theorem 2 of McElroy and Politis

(2007a) with Proposition 6.1 of McElroy and Politis (2007b). It follows from our assumptions

on the distribution of σt and Theorem 2.2.8 of Embrechts et al. (1997) that

F σ(x) ∼ c+ x−αH(x) Fσ(−x) ∼ c− x−αH(x) (A.1)
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as x → ∞ for some constants c+, c− > 0 and H ∈ L. Here F (x) = 1 − F (x). Then we

may define the normalization rate an via n−1 = P[|σ| > an], and thus obtain the relation

(c+ + c−)H(an) ∼ aα
nn−1; moreover an ∼ n1/αK(n) for some K ∈ L. The mass in the

two tails is balanced as follows: F σ(x)/F |σ|(x) ∼ c+/(c+ + c−), which we denote by r > 0

(for the right tail), while Fσ(−x)/F |σ|(x) ∼ c−/(c+ + c−), which will be denoted by l >

0. Of course r + l = 1. Another preliminary result we need (which follows from Taqqu

(1975)) is that
∑n

t=1 Gt obeys a Central Limit Theorem at rate cn, with limiting variance

given by c−2
n

∑n
t,s=1 γ(t − s) ∼ 1/(β + 1) – also see McElroy and Politis (2007a) for the

variance calculation; furthermore,
∑n

t=1 |Gt|α,
∑n

t=1 G2
t , and

∑n
t=1 (Gt)

<α> obey Laws of

Large Numbers (LLNs). The LLNs results follow from Taqqu (1975) also – without having

to assume any higher order moment conditions – by finding that the relevant Hermite rank

in each case is at least one. Now using Fitzsimmons and McElroy (2010) we begin with the

joint Fourier-Laplace transform

E exp

{
iθc−1

n

n∑
t=1

Yt − φ c−2
n

n∑
t=1

Y 2
t

}
= E

[
exp

{
ic−1

n

n∑
t=1

σtZt

}]
,

with Zt = Gt(θ +
√

2φNt) and {Nt} iid standard normal, and independent of {σt} and {Gt}.
The above equality follows by conditioning on these latter variables. Next, we expand by

conditioning on {Gt} and {Nt}, using our assumptions about σt

E

[
exp

{
ic−1

n

n∑
t=1

σtZt

}]
= E

[
Πn

t=1E[exp{ic−1
n σtZt}|{Gt}, {Nt}]

]

= E exp

{
n∑

t=1

log

(
1 + iµc−1

n Zt +

∫ ∞

−∞

[
exp{ic−1

n Ztx} − 1− ic−1
n Ztx

]
fσ(x) dx

)}

Now the integral can be broken into two portions corresponding to the positive and negative

real numbers respectively, and using integration by parts and (A.1) we obtain

∫ ∞

0

[
exp{ic−1

n Ztx} − 1
] (

ic−1
n Zt

)
F σ(x) dx−

∫ 0

−∞

[
exp{ic−1

n Ztx} − 1
] (

ic−1
n Zt

)
Fσ(x) dx

= i sign(Zt)

∫ ∞

0

[exp{isign(Zt)y} − 1] F σ

(
ycn

|Zt|
)

dx

− i sign(Zt)

∫ ∞

0

[exp{−isign(Zt)y} − 1] Fσ

(−ycn

|Zt|
)

dx.

Now by (A.1) we have, for any fixed y > 0

F σ

(
ycn

|Zt|
)
∼ c+y−αc−α

n |Zt|αH(cn) Fσ

(−ycn

|Zt|
)
∼ c−y−αc−α

n |Zt|αH(cn)
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as n →∞ for each t. As argued in McElroy and Politis (2007a), we can take the limit over

n inside the integral expression by the Dominating Convergence Theorem so long as we have

an appropriate dominating function. Now near the origin | exp{±iy} − 1| = O(y), so that

the overall order of the integrand is y1−α, an integrable function near zero (since 1 < α < 2).

Furthermore, direct calculation shows that

∫ ∞

0

[exp{±iy} − 1] y−α dy = C−1
α (tan(πα/2)± i) .

Here C−1
α = Γ(1 − α) cos(πα/2) by definition (see Property 1.2.15 of Samorodnitsky and

Taqqu (1994)). Therefore after some algebra our joint Fourier-Laplace Transform is asymp-

totic to (using Taylor series and the fact that cn →∞)

E exp

{
iµc−1

n

n∑
t=1

Zt − (c+ + c−)H(cn)

Cαcα
n

n∑
t=1

|Zt|α(1− i(r − l)sign(Zt) tan(πα/2))

}
. (A.2)

At this point we break into the three separate cases, according to the value of A – recall that

the Balanced Condition implies that A exists in the set [0,∞]. First, suppose that A = 0,

i.e., the tail index dominates. Then cn ∼ an and dn/an → 0. In the first term of (A.2), we

have
∑n

t=1 Zt = θ
∑n

t=1 Gt +
√

2φ
∑n

t=1 GtNt. The first term here is OP (dn) by (2.7) since

EGt = 0. The second term – conditional on {Gt} – takes the form exp{−φ
∑n

t=1 G2
t} in the

characteristic function. Since G2
t has nonzero mean, this sum is OP (n) so long as {G2

t} obeys

the LLN. Thus when A = 0 we see that c−1
n

∑n
t=1 Zt = a−1

n

∑n
t=1 Zt

P−→ 0 (since n/a2
n → 0).

As for the second term of (A.2), note that a−α
n H(an) ∼ n−1/(c+ + c−) for each t, so that we

obtain

exp
{−C−1

α

(
E|Z|α − i(r − l)E(Z)<α> tan(πα/2)

)}

as the final limit. This uses the variance computation of Taqqu (1975) for partial sums of a

function of a Gaussian, where this function has Hermite rank at least one. The computation

is not affected by the presence of the iid {Nt} sequence.

Next, suppose that A = ∞ so that cn ∼ dn and an/dn → 0. In this case c−2
n

∑n
t=1 G2

t
P−→ 0

as well (since β > 0), and as a result c−1
n

∑n
t=1 Zt

L
=⇒ N (0, θ2/(β + 1)) since EGt = 0, as

determined earlier in the proof. Moreover cα
n/n →∞, so the second term of (A.2) is oP (1).

Thus the final limit is actually just exp{− θ2µ2

2(β+1)
}, by the definition of weak convergence.

Note that this argument is valid even when µ = 0, although the limit is degenerate. In the

µ = 0 case, a different convergence rate is needed; it can be shown that cn is required to

satisfy cα
n ∼ nH(cn) as n → ∞. In this case the limiting distribution would be the same

as the A = 0 case where the tail index dominates; also, cn = an clearly has the needed
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asymptotic behavior. But our choice of cn as the maximum of an and dn will not produce

the correct rate in this case; essentially, the mean zero structure in σt sufficiently destroys

the long memory in Gt such that the partial sums (and sample second moments) behave like

the A = 0 case, even though A = ∞.

Finally, suppose that A ∈ (0,∞) so that cn ∼ an max{1,√A} ∼ dn max{1/√A, 1}.
In this case we still have c−2

n

∑n
t=1 G2

t
P−→ 0 so that in the first term of (A.2) we obtain

c−1
n

∑n
t=1 Zt

L
=⇒ N (0, θ2 min{A, 1}/(β + 1)). As for the second term, we essentially multiply

by max{1,√A} raised to the −α power. The final result is then

exp

{
−θ2µ2 min{1, A}

2(β + 1)
1{A>0} − E|Z|

α

Cα

min{A−α/2, 1}
(

1− i(r − l)
E(Z)<α>

E|Z|α tan(πα/2)

)
1{A<∞}

}
,

where Z = G(θ +
√

2φN). In computing E|Z|α the variables G and θ +
√

2φN separate, due

to independence. We here make a connection to Theorem 1 and 2 of McElroy and Politis

(2007a) by specializing to the case that G is Gaussian. Then E(Z)<α> = 0 and E|G|α is

(γ(0))α/22α/2π−1/2Γ((1 + α)/2) =
(γ(0))α/22α/2π1/2

Γ((1− α)/2) cos(πα/2)
=

(γ(0))α/22−α/2Γ(1− α/2)

Γ(1− α) cos(πα/2)
,

via Samorodnitsky and Taqqu (1994) (p. 142) followed by 8.334.2 and 8.335.1 of Gradshteyn

and Ryzhik (1994). Thus C−1
α E|G|α = (γ(0)/2)α/2Γ(1−α/2), and this final Gamma function

is accounted for in the scale, since it is easy to show that a−α
n ∼ n−1Γ(1 − α/2) from the

definition of σt in McElroy and Politis (2007a). This concludes the proof.

We might also comment here on the asymptotic behavior when µ = 0. In this case the

mean of Gt need not be zero, but we at least need to suppose that the LLNs for the functionals

of Gt still hold. Our viewpoint is that cn is a generic rate to be determined. Then we still

arrive at (A.2) only with the first term set to zero; clearly we require H(cn)c−α
n ∼ n−1 to

obtain convergence, i.e., cn ∼ an. Note this should be our definition, independent of whether

tails or memory dominates. In other words, we can self-normalize the partial sums by the

square root of the sample second moment, since they grow at the same rate – no matter

the amount of long memory present. Essentially, letting µ = 0 destroys enough of the long

memory behavior in the partial sums, such that the true value of β is irrelevant to the

asymptotics. The FLT in question therefore converges to that of (S, U), corresponding to

the A = 0 case of the scenario where µ 6= 0. Of course, this has repercussions for self-

normalization – use of a L̂Mn(ρ) term in the denominator will force the entire statistic to

zero in probability when memory dominates tail, and thus needs to be omitted. 2

Proof of Theorem 2. Since all the assumptions of Theorem 1 are in place – including

µ 6= 0 – all the conclusions of that result apply. (We do not pursue an analysis of the µ = 0
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case, though adaptations of the following argument could be made.) First by simple algebra

we obtain

1

n− |h|
n−|h|∑
t=1

(
XtXt+h −X

2

n

)

=
1

n− |h|
n−|h|∑
t=1

(Xt −Xn)(Xt+|h| −Xn) +
Xn

n− |h|


2|h|Xn −

|h|∑
t=1

(Xt + Xt+n−|h|)


 .

The second term on the right hand side OP (1/n) since Xn is consistent for the mean η, and

|h| = o(n). So we can work instead with the first term on the right hand side, and clearly

we can replace Xt with Yt. Then we get

M∑

|h|=1

1

n− |h|
n−|h|∑
t=1

(Yt−Y )(Yt+|h|−Y ) = 2
M∑

h=1

(
1

n− h

n−h∑
t=1

YtYt+h − Y
1

n− h

n−h∑
t=1

(Yt + Yt+h) + Y
2

)
.

Here M = bnρc. Now from Theorem 1 we know that Y = OP (n−1cn), so that

L̂M
ρ

n(ρ) = 2
M∑

h=1

1

n− h

n−h∑
t=1

YtYt+h + OP (Mn−2c2
n).

Now by the definition of cn, we have OP (Mn−2c2
n) = UP (nρ−2+max[2/α,(β+1)]). Dividing by bρ

n

yields the first error term of Theorem 2. What remains we split into three terms

2µ2

M∑

h=1

γh + 2
M∑

h=1

1

n− h

n−h∑
t=1

(σtσt+h − µ2)GtGt+h + 2µ2

M∑

h=1

1

n− h

n−h∑
t=1

(GtGt+h − γh).

Clearly the first term equals
∑

0<|h|≤M Rh = bM+1 ∼ L(nρ)nβρ. The third term is asymptotic

to 2µ2n−1
∑M

h=1

∑n
t=1(GtGt+h − γh), which has variance

4µ4

n2

M∑

h,k=1

n∑
t,s=1

Cov(GtGt+h, GsGs+k)

=
4µ4

n2

M∑

h,k=1

n∑
t,s=1

(E[GtGt+hGsGs+k]− γhγk)

=
4µ4

n2

M∑

h,k=1

n∑
t,s=1

(cum(G0, Gk, Gt−s, Gt−s+h) + γt−sγt−s+h−k + γt−s−kγt−s+h)

=
4µ4

n2

M∑

h,k=1

∑

|l|<n

(1− |l|/n) (cum(G0, Gk, Gl, Gl+h) + γlγl+h−k + γl−kγl+h) .
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The summation involving the fourth order cumulant function is finite by our hypothesis;

this function is identically zero in the Gaussian case. (Incidentally, there is a mistake in

the proof of Theorem 3 of McElroy and Politis (2007a), where it is incorrectly stated that

Var[G0Gh] = 2γ2
h.) Now using the Cauchy-Schwartz inequality twice and the fact that

∑

|l|<n

γ2
l =





O(1) if β < 1/2

U(log n) if β = 1/2

U(n2β−1) if β > 1/2,

we see that the variance of the third term of our statistic is of order U(n−1M2nξ) with ξ = 0

if β ≤ 1/2 and ξ = 2β−1 if β > 1/2. Hence the overall order of this term is UP (nρ−η), which

corresponds to the second error term of Theorem 2. Finally, for any fixed h > 0 consider

n−1

n∑
t=1

(σtσt+h − µ2)GtGt+h.

Let Zt = σtσt+h− µ2, and split the sum into h + 1 subseries over the indices Ij = {j, j + h +

1, j +2h+2, · · · } for j = 1, 2, · · · , h+1. Then the {Zt} series restricted to any of these h+1

index sets will consist of iid random variables. Then on Ij the Zt are iid and in D(α) – see

Theorem 3.3(iv) of Cline (1983) and Davis and Resnick (1986) – and are also independent of

G, the σ-algebra of {Gt}. We can then apply the method of Theorem 2 (note that the regular

variation property (A.1) of the product variables follows from their being in D(α), although

the slowly-varying function will be different from H) to n−1
∑

t∈Ij
ZtGtGt+h, arriving at

(A.2) with appropriate substitutions (the mean term is zero, since we have already centered).

Clearly n−α
∑

t∈Ij
|GtGt+h|α = OP (n1−α) by the Markov inequality; since this term raised to

the 1/α power forms the limiting scale component, the overall order is OP (n1/α−1). This order

of approximation holds for each h, which completes the proof by summing over |h| ≤ M .

2

Proof of Theorem 3. For the sample variance term, we can replace Xn with η asymp-

totically, using the same arguments as in Theorem 2 of McElroy and Politis (2007a). In the

case A = 0, it is clear that c−2
n nL̂Mn(ρ) = OP (nbn/an) since the slowly varying functions

are overwhelmed by the polynomial growth of an, and this quantity tends to zero as n →∞.

When A > 0 we must assume that Dρ is finite and nonzero; then c2
n = max{1/A, 1}nbn so

that c−2
n nL̂Mn(ρ) → min{A, 1}Dρ. Since the distribution of this third term is always a point

mass, it converges jointly with the partial sums and sums of squares variables as well. 2
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Proof of Proposition 1. First we note that the Gaussian process {Vt} is λ-weakly de-

pendent by Bardet et al. (2008). Then for any bounded Lipschitz function h defined on Ru

for some integer u, the function h ◦ g defined via (h ◦ g)(x1, · · · , xu) = h(g(x1), · · · , g(xu))

is Lipschitz as well, with Lip (h ◦ g) ≤ Lip h · supy 6=x

∑u
j=1 ‖g(yj)− g(xj)‖/

∑u
j=1 ‖yj − xj‖.

Then it follows that {Gt = g(Vt)} is λ-weakly dependent.

Next, for any Lipschitz function h on Ru, define hσ to be the function hσ(xi1 , · · · , xiu) =

h(σi1xi1 , · · · , σiuxiu), where {σt} for t ∈ Z denotes an infinite string of positive numbers.

Then we have Lip hσ ≤ Lip h · supy 6=x

∑u
j=1 σj‖yj − xj‖/

∑u
j=1 ‖yj − xj‖. So for arbitrary

bounded Lipschitz functions h1, h2 defined on Ru and Rv,

‖Cov {h1 (Xi1 , · · · , Xiu) , h2 (Xj1 , · · · , Xjv)}‖

≤
∫
‖Cov {hσ

1 (Gi1 , · · · , Giu) , hσ
2 (Gj1 , · · · , Gjv)}‖Πk,lp(σik)p(σjl

)dσ.

This is obtained by conditioning on the volatility series, using its independence from {Gt}
and its serial independence, along with the triangle inequality. The notation p(σt) denotes

the marginal density of the random variable σt. Now the covariance integrand is bounded

by ψ(u, v, Lip hσ
1 , Lip hσ

2 )εr with r ≥ j1 − iu, and since {Gt} is λ-weakly dependent the

function ψ is quadratic in the Lipschitz constants. So substituting our bound for Lip hσ
1

and Lip hσ
2 , we see that the integration against the volatility densities only acts on the

constants supy 6=x

∑u
j=1 σj‖yj−xj‖/

∑u
j=1 ‖yj−xj‖, which by linearity integrate to µ. Hence

the covariance expression for {Xt} is bounded by εr times

u v Lip h1 Lip h2 µ2 + u Lip h1 µ + v Lip h2 µ,

which shows that the series is λ-weakly dependent. If in addition {Vt} is causal, it is θ-

weakly dependent with bounding constant ψ(u, v, Lip g1, Lip g2) = v Lip g2 for functions

g1, g2. Tracing through the same arguments shows that {Gt} is θ-weakly dependent and

that the covariance for {Xt} is bounded by εr times vLip h2 µ, so that {Xt} is also θ-weakly

dependent. 2

Appendix B: Validity of Subsampling Under θ-Weak De-

pendence

We here develop a theoretical result regarding the validity of the subsampling procedure for

self-normalized statistics computed from strictly stationary time series with θ-weak depen-

dence. It is emphasized that this result is developed in a context much more general than

25



that of the rest of the paper, i.e., general statistics from a general processes satisfying the

weak dependence condition of Doukhan and Louhichi (1999).

Consider a statistic θ̂n as an estimator of unknown parameter θ (not to be confused

with the nomenclature for the weak dependence), which has a studentization σ̂n such that

τn(θ̂n − θ)/σ̂n converges weakly to some limit random variable with cdf denoted by L. Let

the sampling cdf be denoted Ln, which is computed from a sample of size n drawn from a

stationary θ-weakly dependent process with coefficients εr.

Assumption A. As n → ∞ we have Ln(x) → L(x). In addition, αn(θ̂n − θ) converges

weakly to Z and δnσ̂n converges weakly to W , for positive sequences {αn} and {δn} satisfying

τn = αn/δn. Here, Z and W are two random variables, where W is positive with probability

one.

Let the subsampling distribution estimator based on the self-normalized statistic τn(θ̂n−
θ)/σ̂n be denoted by L̂n,b(x), as defined in Section 2.3. Also denote the (lower) 1−p quantile

of the subsampling distribution by cn,b(1−p); the 1−p quantile of L(x) is denoted by c(1−p).

Then we have the following result, which is proved below. The theorem as stated results in

one-sided confidence bounds; the construction of confidence intervals (either equal-tailed or

symmetric) is immediate in view of the discussion in Politis et al. (1999).

Theorem 4 Assume Assumption A. Also, assume αb/αn → 0, τb/τn → 0, b/n → 0, and

b → ∞ as n → ∞. Assume the time series is strictly stationary and θ-weakly dependent

with rate εr = O(r−a) for a ≥ 1/2.

i. If x is a continuity point of L, then L̂n,b(x)
P−→ L(x).

ii. If L is continuous, then supx |L̂n,b(x)− L(x)| P−→ 0.

iii. If L is continuous at c(1− p), then as n →∞,

P
[
τn (θ̂n − θ)/σ̂n ≤ cn,b(1− p)

]
→ 1− p.

Thus the asymptotic coverage of the interval [θ̂ − σ̂nτ
−1
n cn,b(1− p),∞) is the nominal 1− p.

Proof of Theorem 4. The proof is a splicing of Theorem 11.3.1 of Politis et al. (1999)

with Lemma 3.1 of Ango-Nze et al. (2003); but we repeat some of the calculations of the

latter work, due to its non-accessibility. We focus on the proof of i, since ii and iii will follow

as in the proof of Theorem 3.2.1 of Politis et al. (1999), utilizing the assumed continuity of

L at value x. Letting Zn,b,t = τb (θ̂n,b,t − θ)/σ̂n,b,t, define

Ib,t = 1{Zn,b,t≤x}
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for t = 1, 2, · · · , n − b + 1. So we can define a version of the subsampling estimator

with θ̂n replaced by the unknown θ, and call this Un,b(x); in other words, let Un,b(x) =

(n− b + 1)−1 ∑n−b+1
t=1 Ib,t. As in the former part of the proof of Theorem 11.3.1 of Politis et

al. (1999), the difference between Ln,b(x) and Un,b(x) tends to zero in probability for each

x, so that we can focus on the latter expression. (The content of Assumption A is used in

this part of the argument.) Expanding the variance of Un,b(x) with q = n− b + 1 yields

Var Un,b(x) = q−2


∑

|h|<q

(q − |h|)γI(h)


 ,

where γI(h) = Cov (Ib,t, Ib,t+h). This expression does not depend on t due to strict station-

arity; we suppress dependence on b and n in this notation.

Note that Var Un,b(x) tends to zero as long as q−1
∑q

h=b γI(h) → 0 as n → ∞ (since

b/q → 0 and γI(h) is a bounded sequence). We expand the covariance function γI(h) as in

the proof of Lemma 3.1 of Ango-Nze et al. (2003), in particular obtaining their equation

(3.5). Specifically, let hx(t) = 1{t≤x} and hx,δ(t) = 1{t≤x}+(1− (t−x)/δ)1{x<t≤x+δ} for some

δ > 0; this second function is a piecewise linear approximation to the former. The central

issue with θ-weak dependence is that statistics should ultimately be Lipschitz functions in

the data, and the indicator function violates this condition. However, one can approximate

it if there is suitable continuity in the limit cdf. Note that Ib,t = hx(Zn,b,t). Then we have

γI(h) = Cov (hx(Zn,b,t)− hx,δ(Zn,b,t), hx(Zn,b,t+h))

+ Cov (hx,δ(Zn,b,t), hx(Zn,b,t+h)− hx,δ(Zn,b,t+h))

+ Cov (hx,δ(Zn,b,t), hx,δ(Zn,b,t+h)) .

For the first term on the right hand side, use the Cauchy-Schwarz inequality to obtain

the bound of V ar(1{x<Zn,b,t≤x+δ}), which in turn is bounded by P[x < Zn,b,t ≤ x + δ] =

Lb(x + δ) − Lb(x) by strict stationarity. The same argument applies to the second term,

since P[x < Zn,b,t+h ≤ x + δ] = Lb(x + δ) − Lb(x) as well. These quantities can be made

suitably small by choosing δ small enough due to the assumed continuity at x.

The final term can be handled via the definition of θ-weak dependence, since hx,δ is a

Lipschitz function of the data. We then have that

Cov (hx,δ(Zn,b,t), hx,δ(Zn,b,t+h)) = O(
√

b εh−b+1/δ)

where εr is the weak dependence rate in the assumptions of the theorem. Note that, up to

the factor
√

b/δ, the above is just like the bound entailed by Lemma A.0.2 of Politis et al.

(1999).
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Using the choice δ = (n−2ab)
1/4

as in Ango-Nze et al. (2003), it then follows that

γI(h) → 0 as h →∞. A Cesaro-mean argument now implies that Var Un,b(x) tends to zero,

and the theorem is proven. 2
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